Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Notes
Crystal structure of Ca5(Sc0.4Ti0.6)4Fe2As2O11
Rayko SimuraYudai YatsuNaomichi SakaiHisanori YamaneHiraku Ogino
Author information
JOURNAL OPEN ACCESS
Supplementary material

2024 Volume 132 Issue 1 Pages 34-37

Details
Abstract

Single crystals of Ca5(Sc0.4Ti0.6)4Fe2As2O11 exhibiting highly anisotropic properties compared to other iron-based superconducting materials were prepared by the self-flux method. Fundamental X-ray diffraction spots from a single crystal were indexed with tetragonal cell parameters of a = 3.8964(1) Å, c = 41.2890(12) Å, and weak diffuse streaks were observed along the c* direction at a period of a*/2. The fundamental diffraction data were analyzed using an average crystal structure model (space group I4/mmm). [FeAs] layers and perovskite-type block layers alternate in the crystal structure. Each block layer is composed of four sublayers: a central structure consisting of two individual perovskite-type [Ca8(Sc/Ti)O6] sublayers, and two outer oxygen-deficient [Ca8(Sc/Ti)O5] sublayers. In the [Ca8(Sc/Ti)O6] sublayers, the oxygen positions are split into four with equal probability. The chemical composition was determined to be Ca5(Sc0.4Ti0.6)4(FeAs)2O11, and the Ti content of greater than 0.5 suggests that the superconductivity can be attributed to electron doping.

Content from these authors
© 2024 The Ceramic Society of Japan

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
Previous article Next article
feedback
Top