Journal of the Combustion Society of Japan
Online ISSN : 2424-1687
Print ISSN : 1347-1864
ISSN-L : 1347-1864
FEATURE—Numerical Simulation for Design and Development of Combustion Equipment
Development of Automotive Engine Combustion Simulation Software “HINOCA”
Yasuhiro MIZOBUCHI
Author information
JOURNAL FREE ACCESS

2016 Volume 58 Issue 186 Pages 191-196

Details
Abstract

An automotive engine cylinder simulation software is now being developed under the support of Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology.” The software is named “HINOCA.” HINOCA is based on fully compressible Navier-Stokes equations which are filtered for LES(Large Eddy Simulation), and employs the Cartesian grid and immersed boundary (IB) methods to reduce the mesh generation cost and labor. The flow solver platform is developed by Japan Aerospace Exploration Agency by utilizing its aerospace CFD (Computational Fluid Dynamics) technology. The sub-models, spray, ignition, flame propagation and wall heat loss, are built into HINOCA by collaborating universities and research institutes. In the newly developed work flow based on the Cartesian grid and IB methods, mesh generation process is reduced to almost zero and flow simulation can be run directly from the cylinder configuration data defined in STL format. The simulation of Steady State Flow Bench shows a fairly good agreement with the measurement. The motoring simulation dealing with moving valves and a piston is successfully conducted by the employed CFD techniques. Built-in of the sub-models is now on going.

Content from these authors
© 2016 Combustion Society of Japan
Previous article Next article
feedback
Top