TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)
Online ISSN : 1880-0408
Print ISSN : 0389-2441
ISSN-L : 0389-2441
Originals
Introduction of Pinning Centers to Coated Conductors by High-energy Heavy-ion Irradiation and Their Effects on Critical Current Characteristics
Noriko CHIKUMOTOKazuo NAKASHIMAHiroshi USHIKITakayuki TERAI
Author information
JOURNAL FREE ACCESS

2009 Volume 44 Issue 12 Pages 523-528

Details
Abstract
To enhance the critical current density (Jc) in magnetic fields, we performed heavy-ion irradiation to introduce artificial pinning centers into YBCO—coated conductors. It is well known that high-energy heavy-ion irradiation introduces amorphous tracks along ion trajectories. Since the morphology and the size of the defect depend on the electron stopping power, Se, we used three different irradiation conditions, namely, 400 MeV Kr-ions, 450 MeV Xe-ions, and 500 MeV Au-ions, to study its effect. All of them enhance the in-field Jc, though the largest enhancement was observed after irradiation with 450 MeV Xe-ions. We also studied the dependence of Jc enhancement to optimize irradiation fluence. In all cases, the reduction of Jc was observed when the irradiation fluence exceeded 1 x 1012 ions/cm2, which may be attributed to the reduction of superconducting volume as well as the depression of superconductivity. From the angular dependence of Jc measurement, the columnar defects act as unidirectional pinning sites, as expected, but with a very large trapping angle of approximately 45°.
Content from these authors
© 2009 by Cryogenics and Superconductivity Society of Japan (Cryogenic Association of Japan)
Previous article Next article
feedback
Top