TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)
Online ISSN : 1880-0408
Print ISSN : 0389-2441
ISSN-L : 0389-2441
Mechanical Disturbances in Superconducting Magnet (I)
Mechanism and effect of the frictional disturbances
Hideaki MAEDAOsami TSUKAMOTOYukikazu IWASA
Author information
JOURNAL FREE ACCESS

1983 Volume 18 Issue 2 Pages 57-69

Details
Abstract
Frictional sliding occurs on both a microscopic and a macroscopic scale. Sliding on a microscopic scale appears as discrete events called microslips. Microslips are inherent in all sliding events and are quite different from macroscopic instabilities such as stick-slips. It is thought that the “training effect” observed in quench current data from a superconducting braid may be caused by microslips.
The mechanism of sliding motion and its effects at 4.2K were studied in detail for a number of metal/insulator pairs that model superconducting magnet windings; the results impact the performance of superconducting magnets. Organic surface coating materials are generally effective in eliminating macroscopic instabilities. Instrumentation used in these experiments includes a high-resolution extensometer and an acoustic emission sensor, both with sensitivities capable of detecting microslips (-1μm).
Content from these authors
© Cryogenic Association of Japan
Previous article Next article
feedback
Top