Abstract
Strong magnetic fields can be generated for magnetization of the high-Tc superconductor (HTS) with pulsed magnetic fields using a small exciting coil. In the present study, magnetization using the pulsed magnetic field is performed on HTS bulk samples in the zero-field cooled state. In order to saturate the magnetization, it was necessary to optimize the time constant of the magnetic flux invasion and the flux flow during the increasing and decreasing processes of the pulsed magnetic field. Therefore, we measured the magnetic flux density on the pulsed field magnetization process and explained the relation between the pulsed magnetic field and the time constant of the magnetic flux invasion and flux flow. An empirical model of the pulsed field magnetization process was also proposed and optimum conditions were studied for pulsed field magnetization of the HTS. From this study, it was confirmed that an optimum pulsed waveform existed for pulsed field magnetization.