TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)
Online ISSN : 1880-0408
Print ISSN : 0389-2441
ISSN-L : 0389-2441
Superconductivity and Mechanical Properties of Al2O3 Long Fiber-added BPSCCO Bulk
Koji MATSUNAGAArata NISHIMURASadao SATOHOsamu MOTOJIMA
Author information
JOURNAL FREE ACCESS

2000 Volume 35 Issue 6 Pages 285-291

Details
Abstract
The Bi-system bulk superconductor is expected to be applied to a current lead that has large capacity because of its low thermal conductivity. However, it is a ceramic material and mechanically brittle, so it must be handled very carefully to prevent damaging. Moreover, damage by electromagnetic force becomes an important problem when the conductor is applied to a large energy system. Therefore, the mechanical properties of the Bi-system bulk superconductor must be improved. We have examined the effect of adding short fiber to the Bi1.85Pb0.35Sr1.90Ca2.03Cu3.05Oy (BPSCCO) bulk and studied the possibility of BPSCCO bulk fiber reinforcement. The critical current density of the short fiber-added BPSCCO was lower than that of the BPSCCO bulk because some compounds were created by reaction between the short fiber and the BPSCCO matrix. The interface between the fiber and the BPSCCO matrix was not coherent, so the mechanical property of the short fiber-added BPSCCO was inferior to BPSCCO bulk. Although the bonding force on the fiber/matrix interface is weak, long fibers give a wider contact area between the fiber and BPSCCO matrix. In this study, the influence of the contact area on mechanical properties was investigated using a long-fiber ceramic. Al2O3 long fiber-added BPSCCO (Al2O3 long fiber/BPSCCO) samples were fabricated. The Al2O3 long fibers were arranged unidirectionally in the BPSCCO matrix. The superconductivity and mechanical properties of these samples were examined. The critical current density measurement at 77K showed inferior superconductivity of the Al2O3 long fiber/BPSCCO sample to the BPSCCO bulk. It is considered that the compounds created by the reaction between the Al2O3 long fiber and the BPSCCO matrix degraded the superconductivity of the sample. A room-temperature, three-point bending test of the Al2O3 long fiber/BPSCCO sample sintered at 1, 078K for 90ks showed that a higher volume fraction of the Al2O3 long fiber resulted in lower bending strength and higher stiffness. It was clarified that an increment in the contact area between the fiber and matrix increased the stiffness of the sample, but the bending strength was still lower because of the weak interfacial contact and concentration of stress on the matrix side of the Al2O3 long fiber/BPSCCO-matrix interface. Therefore, to realize the fiber reinforcement of BPSCCO bulk, it is recognized that improvements in interfacial contact must be achieved.
Content from these authors
© Cryogenic Association of Japan
Previous article Next article
feedback
Top