Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special issue on Int. Symp. on River Tech. for Innovations and Social Systems at WECC2015 and Special Session on Disaster Risk Management at 11th I3R2
Mitigating Rainfall-Induced Sediment Hazard and Soil Erosion Using Organic Amended Soil Improvement
Khonesavanh VilayvongNoriyuki YasufukuKiyoshi Omine
Author information
JOURNAL OPEN ACCESS

2016 Volume 11 Issue 6 Pages 1228-1237

Details
Abstract

Soil-organic amendment (SOA) is one of the sustainable soil improvement measures to mitigate climate change related issues such as rainfall-induced hazard and soil erosion. Organic wastes particularly compost and biochar can be reused and recycled into viable resources. However, there are limited data on incoporating organic wastes into a soil that is susceptible to erosion by rainfall. Therefore, objective of this study is to investigate properties of a soil from Okinawa prefecture (Kunigami maaji) that are associated with resisting ability against artificial rainfall intensities of 30, 60, 90 and 120 mm/h after adding two organic matters: household-derived compost and rice hush-derived biochar. The properties were soil-water retention, runoff, soil loss, infiltration and electrical conductivity. The compost was mixed with the soil at application rates of 0.5, 1.0, 1.5 and 2.0 kg/m2. The compost of 1.0 kg/m2 was mixed with the soil and the biochar at application rates of 1, 3, and 5% by total weight. Experimental results indicate that the soil water retention properties of the soil were improved by the treatment of compost and biochar. However, soil loss was not significantly reduced under initially saturated soil condition, applied rainfall intensities, testing duration and experimental conditions. The results of this study could be used as baseline data for evaluating correlation between properties of soil water retention curves to soil erosion.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2016 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JDR Official Site.
https://www.fujipress.jp/jdr/dr-about/
Previous article Next article
feedback
Top