Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special Issue on Disaster and Big Data Part 2
Predicting Delay of Commuting Activities Following Frequently Occurring Disasters Using Location Data from Smartphones
Takahiro YabeYoshihide SekimotoAkihito SudoKota Tsubouchi
Author information
JOURNAL OPEN ACCESS

2017 Volume 12 Issue 2 Pages 287-295

Details
Abstract

Natural disasters that frequently occur, such as typhoons and earthquakes, heavily affect human activities in urban areas by causing severe congestion and economic loss. Predicting the delay in usual commuting activities of individuals following such disasters is crucial for managing urban systems. We propose a novel method that predicts such delay of individuals’ movements in several frequently occurring disasters using various types of features including the commuters’ usual movement patterns, disaster information, and geospatial information of commuters’ locations. Our method predicts the irregularity of commuting activities in metropolitan Tokyo during several typhoons, and earthquakes, using Yahoo Japan’s GPS dataset of 1 million users. The results show that the irregularity of individuals’ movements are significantly more predictable than with previous models. Also, we are able to understand that commuters’ usual movement patterns, disaster intensity, and geospatial features including road density and population density are main factors that cause commuting delay following disasters.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JDR Official Site.
https://www.fujipress.jp/jdr/dr-about/
Previous article Next article
feedback
Top