Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special Issue on Disaster and Big Data Part 3
A Real-Time Tsunami Inundation Forecast System Using Vector Supercomputer SX-ACE
Akihiro MusaTakashi AbeTakuya InoueHiroaki HokariYoichi MurashimaYoshiyuki KidoSusumu DateShinji ShimojoShunichi KoshimuraHiroaki Kobayashi
Author information
JOURNAL OPEN ACCESS

2018 Volume 13 Issue 2 Pages 234-244

Details
Abstract

Tsunami disasters can cause serious casualties and damage to social infrastructures. An early understanding of disaster states is required in order to advise evacuations and plan rescues and recoveries. We have developed a real-time tsunami inundation forecast system using a vector supercomputer SX-ACE. The system can complete a tsunami inundation and damage estimation for coastal city regions at the resolution of a 10 m grid size in under 20 minutes, and distribute tsunami inundation and infrastructure damage information to local governments in Japan. We also develop a new configuration for the computational domain, which is changed from rectangles to polygons and called a polygonal domain, in order to effectively simulate in the entire coast of Japan. Meanwhile, new supercomputers have been developed, and their peak performances have increased year by year. In 2016, a new Xeon Phi processor called Knights Landing was released for high-performance computing. In this paper, we present an overview of our real-time tsunami inundation forecast system and the polygonal domain, which can decrease the amount of computation in a simulation, and then discuss its performance on a vector supercomputer SX-ACE and a supercomputer system based on Intel Xeon Phi. We also clarify that the real-time tsunami inundation forecast system requires the efficient vector processing of a supercomputer with high-performance cores.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JDR Official Site.
https://www.fujipress.jp/jdr/dr-about/
Previous article Next article
feedback
Top