Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special Issue on Future Volcano Research in Japan: Integrated Program for Next-Generation Volcano Research
Experimental Constraints on the H2O-Saturated Plagioclase Liquidus and the Storage Depth of the Izu-Oshima 1986B Basaltic Andesite Melt
Ryoya OidaHidemi Ishibashi Akihiko TomiyaMasashi UshiodaNatsumi HokanishiAtsushi Yasuda
Author information
JOURNAL OPEN ACCESS

2022 Volume 17 Issue 5 Pages 716-723

Details
Abstract

High-temperature melting and crystallization experiments were carried out at pressures from 1 atm to 196 MPa and under H2O-saturated conditions on the basaltic andesite melt of the Izu-Oshima 1986B eruption (i.e., the BM melt), using a 1-atmosphere fO2-controlled furnace and an internally heated pressure vessel. These data were used to constrain the H2O-saturated plagioclase liquidus (HSPL) of the melt. The fO2 conditions were controlled by a mixed H2-CO2 gas at the Ni-NiO (NNO) buffer for the 1 atm experiments, but were not controlled for the high-pressure experiments. Plagioclase is the liquidus phase at 1 atm, whereas early saturation of Fe-Ti oxide above the plagioclase liquidus occurred in the high-pressure experiments due to the elevated fO2 conditions. The HSPL temperature decreases from 1172 ± 8°C to 1030 ± 20°C as the pressure increases from 1 atm to 196 MPa. A combination of previously proposed models for the plagioclase liquidus and melt H2O-solubility can predict the experimentally determined HSPL temperatures, even if oxidation-induced magnetite crystallization occurs. Using these models and the previously reported pre-eruptive temperature of ∼1100 ± 30°C, we estimate the pre-eruptive pressure conditions of the BM melt to be 42-32+48 MPa, which corresponds to depths of 1.9-1.4+1.9 km. The estimated depth is consistent with that of the shallow active dikes previously identified from geophysical studies, suggesting that the BM melt was derived from a small, shallow magma chamber formed in the shallow dike region.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JDR official website.
https://www.fujipress.jp/jdr/dr-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top