Journal of Environment and Engineering
Online ISSN : 1880-988X
ISSN-L : 1880-988X
Papers
An Experimental Study of Flame Characteristics of Jet Diffusion Flames in Cylindrical Furnaces
(1st Report, Effect of Inner Diameter of Furnace on NOx Emission Properties)
Susumu NODAJunya INOHAEKenichi NAKANOYoshiaki ONUMA
Author information
JOURNAL FREE ACCESS

2007 Volume 2 Issue 3 Pages 505-513

Details
Abstract

The combination of a burner and a combustion chamber is an important factor controlling flame characteristics. However, to our knowledge, this factor has yet to be investigated systematically. In the present study, coaxial jet diffusion flames in cylindrical combustion chambers have been studied in terms of inner diameters of the combustion chambers, global equivalence ratios, and turbulence in airflow. A fuel nozzle is composed of a stainless steel tube having an inner diameter (i.d.) of 2 mm with a coaxial pilot burner of 3.19 mm i.d., surrounded by two air coaxial tubes of 12 mm i.d. and 30 mm i.d., respectively. The inner and outer air tubes are for higher and lower airflows, respectively, and the turbulence in the airflow is changed by the velocity difference. The main fuel is propane. Hydrogen is used for the pilot flame, with a volumetric fuel ratio of 0.3. Each wall of the combustion chamber is made of a heat-resistant glass Pyrex tube so that each flame can be visualized. The inner diameter of the furnace is varied in order to investigate the effect of furnace size on the flame characteristics. The increase in the diameter of the combustion chamber has been found to enhance the exhaust gas self-recirculation, because the NOx emission decreases. The increase in turbulence in the airflow strengthens the entrainment of the exhaust gas transported upstream by the recirculation vortex. The increase in the global equivalence ratio from 0.2 to 0.8 in the present study decreases the oxygen concentration of the exhaust gas and leads to diluted combustion through the exhaust gas self-recirculation. A proper combination of these factors has been found to yield a low NOx combustion.

Content from these authors
© 2007 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top