2023 Volume 1 Article ID: 14
Atmospheric gravity waves transport momentum in the atmosphere and play an important role in determining temperature and wind distributions through driving the meridional circulation in the middle atmosphere. However, they have wide spatial and temporal scales, which make it difficult to capture the whole feature of gravity waves with any of the latest observations and models. The first Mesosphere-Stratosphere-Troposphere (MST)/ Incoherent Scatter (IS) radar in the Antarctic, PANSY, which was installed at Syowa Station (69.0S, 39.6E) in 2011, can directly estimate the momentum flux of gravity waves in all frequency bands by observing 3-dimensional winds with high precision and high resolution. On the other hand, the super pressure (SP) balloon observation can also estimate momentum transport due to gravity waves in all frequency bands, and its horizontal distribution is also clarified. In order to carry out this SP balloon observation in the Antarctic where the observational constraint on the momentum transport due to gravity waves is especially insufficient, we proposed the LOng-Duration balloon Experiment of gravity WAVE over Antarctica (LODEWAVE). By combining it with the PANSY observation, observational constraints on the momentum transport due to gravity waves in climate models are acquired, which contributes to the improvement of the future prediction by the climate models.