Journal of Fluid Science and Technology
Online ISSN : 1880-5558
ISSN-L : 1880-5558
Papers
Experimental investigation on friction drag reduction on an airfoil by passive blowing
Shiho HIROKAWAKaoruko ETOKoji FUKAGATANaoko TOKUGAWA
Author information
JOURNAL FREE ACCESS

2020 Volume 15 Issue 2 Pages JFST0011

Details
Abstract

Friction drag reduction effect of a passive blowing on a Clark-Y airfoil is investigated. Uniform blowing, conducted in a wall-normal direction on a relatively wide surface, is generally known as an active control method for reduction of turbulent skin friction drag. In the present study, uniform blowing is passively driven by the pressure difference on a wing surface between suction and blowing regions. The suction and the blowing regions are respectively set around the leading edge and the rear part of the upper surface of the Clark-Y airfoil in order to ensure a sufficient pressure difference for passive blowing. The Reynolds number based on the chord length is 0.65×106 and 1.55×106. The angle of attack is set to 0° and 6°. The mean streamwise velocity profiles on the blowing region and the downstream, measured by a traversed hot-wire anemometry, are observed to shift away from the wall by passive blowing. This behavior qualitatively suggests reduction of local skin friction on the wing surface. A quantitative assessment of the friction drag is performed using the law of the wall accounting for pressure gradients (Nickels, 2004), coupled with a modified Stevenson’s law (Vigdorovich, 2016) to account for the weak blowing. From this assessment, the local friction drag reduction effect of passive blowing is estimated to reach 4%–23%.

Content from these authors
© 2020 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top