Abstract
The net rotor torque generated by a straight-bladed vertical axis wind turbine has temporal variation for an azimuth angle of the blade. The torque variation should be investigated to understand the performances of the wind turbine. The blade camber and thickness are important to determine the characteristics of the wind turbine. We have studied effects of the blade camber and thickness on the mean characteristics and temporal torque variation at any azimuth angle of the blade. The mean torque and power increase with the smaller camber and the larger blade thickness over relatively lower tip speed ratio. The maximum mean torque and power coefficient take the largest value at certain blade thickness. The maximum value of the torque variation emerges at an azimuth angle of the blade located in upstream, and it has significant contribution to the mean torque. In particular, over relatively lower tip speed ratio, the maximum value of the torque variation remarkably increases with the smaller camber and the larger blade thickness.