Journal of Geography (Chigaku Zasshi)
Online ISSN : 1884-0884
Print ISSN : 0022-135X
ISSN-L : 0022-135X
Biosphere in 3.5 Ga Submarine Hydrothermal System
Yuichiro UENO
Author information
JOURNAL FREE ACCESS

2003 Volume 112 Issue 2 Pages 208-217

Details
Abstract

Abundant organic matter (kerogen) was identified in 3.5 Ga hydrothermal silica dikes from the North Pole area in the Pilbara craton, Western Australia. The silica dikes developed in the uppermost 1000 m of the ancient oceanic crust. Thus, they would have been deposited in the 3.5 Ga sub-seafloor hydrothermal system. The carbon and nitrogen isotopic compositions of the kerogen were analyzed in this study. Their highly 13C-depleted isotopic compositions (δ13C=-38 to-33%0) strongly suggest that they are originally derived from biologically produced organic matter. The remarkable similarity of the δ13C values between the kerogen and modern hydrothermal vent organisms may suggest that the kerogen was derived from chemoautotrophic organisms. This idea is also consistent with their nitrogen isotopic compositions (δ15N =-4 to + 4‰). The silica dikes consist mainly of fine-grained silica with minor pyrite and sphalerite. These mineral assemblages indicate that the silica dike was deposited from relatively low-temperature (probably less than 150 °C) reducing hydrothermal fluid. Thus, anaerobic thermophilic/hyperthermophilic organisms could have survived in the hydrothermal fluid, which formed the silica dikes. Therefore, it is plausible that a chemoautotrophic-based biosphere (possibly methanogenesis) probably existed in the Early Archean sub-seafloor hydrothermal system.

Content from these authors
© Copyright (c) Tokyo Geographical Society
Previous article Next article
feedback
Top