2018 Volume 27 Issue 4 Pages 343-350
Spheroid culture systems more accurately recreate the in vivo microenvironment and are susceptible to factors that induce differentiation. In this study, we assessed whether bone morphogenetic protein (BMP)-2 induces enhanced osteogenic differentiation in spheroid-derived mesenchymal stem cells (MSCs). MSC spheroids were generated from human adipose tissue-derived MSCs using low-binding plates. Osteogenic differentiation of monolayer and spheroid-derived MSCs was induced by osteogenesis induction medium (OIM) with or without BMP-2. Increased alkaline phosphatase and Alizarin Red staining were observed in spheroid-derived MSCs treated with a mixture of OIM and BMP-2, compared with monolayer MSCs. Spheroid-derived MSCs had increased mRNA and protein expressions of osteogenic runt-related transcription factor 2 (Runx2) and osterix (OSX). The intranuclear expression of OSX was also observed in spheroid-derived MSCs treated with the mixture of OIM and BMP-2. In addition, spheroid-derived MSCs with BMP-2 treatment showed the upregulation of Smad5 mRNA and phosphorylated Smad1/5, suggesting that the Smad-BMP signaling pathway is enhanced in these cells. Our data indicate that the Smad-dependent BMP signaling pathway accelerates osteogenic differentiation in spheroid-derived MSCs, compared with monolayer MSCs.