Journal of High Temperature Society
Print ISSN : 0387-1096
Fundamental Combustion Properties of Pruned Branches of Fruit Tree for Energy Utilization
Kunihiko NAMBATamio IDAToru SAWAI
Author information
JOURNAL FREE ACCESS

2010 Volume 36 Issue 1 Pages 25-30

Details
Abstract
From a viewpoint of environmental preservation and resource protection, the recycling of wastes has been promoting. Expectations to new energy resource are growing by decrease of fossil fuel. Biomass is one of new energies with prevent global warming. This study is an attempt to burn pruned branches of plum trees in order to thermally recycle waste products of fruits agriculture. The devolatilization property of pruned branches of plum trees were observed by the thermogravimerty and differential thermal analysis (TG/DTA) to obtained fundamental data of fuel pyrolysis. The thermogravimetric analyzer was used to measure weight loss and temperature difference. It observed that the weight of pruned branches was decreased under three stages with endothermic reaction during water vaporazation and volatile pyrolysis, and with exothermic reaction during combustion of volatile and fixed carbon. The combustion behavior of pruned branches was observed in the electric furnace, where the video-recording and measurement of pruned branches weight were carried out at sequential steps of the combustion process. It observed that the combustion behavior of pruned branches was similar to woody pellets. The effects of furnace temperature and branch size were examined in order to elucidate the combustion characteristics as fuel, such as ignition delay, burning period, char-combustion time and the change of weight decrease. The results indicated that they are influenced at each step of the combustion processes such as devolatilization, ignition, visible envelope flame combustion and char combustion. Pruned branches showed medium values of characteristic time between of cider and woody pellet, and therefore ume plum pruned branches are considered to be promising alternative fuels.
Content from these authors
© 2010 by High Temperature Society of Japan
Previous article Next article
feedback
Top