2017 Volume 96 Issue 9 Pages 393-399
Hence the development of this cultivation technology would contribute greatly to the progress of onshore cultivation for the production of biomass energy from macroalgae in the future. Recently, the demand of C. lentillifera is rapidly increasing, because it is utilized not only as food but also as functional ingredients. Therefore, a growth enhancement technology of algae using carbon dioxide (CO2) attracts attention as productivity improvement technology. Although it has been reported that the growth of C. lentillifera is facilitated when CO2 is added to culture seawater, the effects of environmental factors during cultivation has not been clarified. Accordingly, we investigated the influences of seawater temperature (20 °C, 25 °C, 28 °C), photon flux density (75 μmol m-2 s-1, 125 μmol m-2 s-1, 250 μmol m-2 s-1) and photoperiod (12 L/12 D, 18 L/6 D, 24 L/0 L) on the growth of C. lentillifera cultivated in the highly concentrated CO2 seawater. As a result, it was possible to increase the growth rate of C. lentillifera by addition of CO2 under any conditions. This suggested that the use of the CO2-enriched seawater improved the decrease of the growth amount due to seawater temperature fluctuation and insufficient sunshine.