Journal of the Japan Institute of Energy
Online ISSN : 1882-6121
Print ISSN : 0916-8753
ISSN-L : 0916-8753
Original Paper
Estimating the Potential Capacity of Introducing Gas Engine Cogeneration in Non-Residential Building Using Geographic Information System
Daisuke TOMOFUJI Atsushi AKISAWA
Author information
JOURNAL FREE ACCESS

2019 Volume 98 Issue 4 Pages 52-61

Details
Abstract

The 5th Strategic Energy Plan indicates that the introduction of cogeneration will be promoted. When cogeneration is introduced widely, it is desirable to disseminate it at a level aligned with the energy demand and potential capacity of a given region. The objective of this study is to estimate the potential capacity for both achieving energy conservation and securing the electric power necessary for business continuity in the commercial sector using cogeneration. Further, this study attempts to estimate by region the potential capacity contributing to improvement in electrical system power flow in general gas provider supply areas. Building energy demand and cogeneration energy conservation performance were analyzed using “BEST”, a comprehensive building energy simulation tool, referring to standard building specifications in FY2013 and based on analysis results in energy conservation plans submitted to administrative agencies with jurisdiction. It is possible to estimate the usage and the total floor area of buildings located in a given region, and to determine location information by using a geographic information system (GIS). Further, by using the GIS, it is possible to determine general gas provider supply areas and the regions where cogeneration can contribute to improvement in electrical system power flow when distributed power is introduced. As a result of the estimation, the potential capacity for both achieving energy conservation and securing the electric power necessary for business continuity is approximately 24.8 GW in the business sector nationwide, and approximately 14.9 GW potential capacity will contribute to improvements in electrical system power flow in general gas provider supply areas.

Content from these authors
© 2019 The Japan Institute of Energy
Previous article Next article
feedback
Top