Journal of the Japan Institute of Energy
Online ISSN : 1882-6121
Print ISSN : 0916-8753
ISSN-L : 0916-8753
Hydrogen Transfer during Co-upgrading Reactions of Coal Liquefaction Residues with Basic Fraction from Coal Liquid
Motoyuki SUGANOKiyoshi MASHIMOTohru WAINAI
Author information
JOURNAL FREE ACCESS

1995 Volume 74 Issue 5 Pages 310-315

Details
Abstract

The hydrogenolysis reaction products derived from Muswellbrook coal were separated into dichloromethane insoluble (liquefaction residue ; CLR) and dichloromethane soluble (DS). DS was separated into non-basic fraction and basic (B) fraction. Then, the hydrogenolysis reactions of mixture of B and CLR were carried out at 420°C for lh under the presence of H2 (5.9MPa) with red mud and sulfur (RMS). Demineralized CLR (DAR) and the sulfided Co-Mo/Al2O3 catalyst (SCM) were also used for the hydrogenolysis. Effects of demineralization of CLR and the catalyst on the hydrogen transfer during the co-upgrading reactions of coal liquefaction residues with B were investigated as follows.
During the co-upgrading reactions of mixture of B and CLR or DAR, it was considered that CLR or DAR was dissolved and dispersed into B composed of nitrogen heterocyclic compounds. Under the presence of SCM, the upgrading of hexane insolubledichloromethane soluble in the mixture was not enhanced, but the upgrading of dichloromethane insoluble (DI) in the mixture was observed. The preferential adsorption of DI onto the surface of SCM occurs because DI is composed of highly condensed basic aromatic compounds.
During the co-upgrading reaction of mixture of B and CLR with RMS, minerals in CLR were also sulfided by the added sulfur. The synergistic effects on co-upgrading of mixture of B and CLR appeared since more hydrogens were transferred to the mixture owing to the catalytic effects of the sulfided minerals. However, in the reaction of mixture of B and DAR with RMS, no effect on the co-upgrading was observed due to low mineral content in DAR.

Content from these authors
© The Japan Institute of Energy
Previous article Next article
feedback
Top