JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN
Online ISSN : 1349-838X
Print ISSN : 0019-2341
ISSN-L : 0019-2341
Original Papers
Temporal Characteristics of the Torus Plasma in an Inductively Coupled Fluorescent Lamp
Katsuhide Misono
Author information
JOURNAL FREE ACCESS

2021 Volume 105 Issue 1 Pages 28-37

Details
Abstract

Low-pressure mercury–argon torus plasma generated in an inductively coupled fluorescent lamp was investigated. The temporal characteristics of the torus plasma from the ignition stage to the stable stage were analyzed by applying the transformer model. The power transfer efficiency was found to be over 90%, and the coupling coefficient was around 0.75. The current density and the electric field strength of the torus plasma were comparable to those of the positive column of a conventional fluorescent lamp. The finite element method was used to analyze the relative electron density distribution in the plasma. The absolute density profile of the electron was estimated by combining the average electron density experimentally determined with the calculated filling factor of the electron. The maximum electron density estimated was around 1.5×1012 cm-3 in the steady state, nearly equal to that experimentally determined by the double probe. The discharge took about one hour to reach the steady state. This can be explained by the mercury transport from the amalgam, which was fixed at the tip of a long, narrow glass tube that penetrated the excitation coil to the discharge vessel. The analysis technique presented in this paper is useful to explain the temporal characteristics of inductive torus plasma as well as the interaction between the plasma and the excitation coil.

Content from these authors
© 2021 The Illuminating Engineering Institute of Japan
Previous article Next article
feedback
Top