Abstract
Recent progress in electrophysiological and microscopic techniques have enabled us to estimate exocytotic and pre-exocytotic events in the secretory machinery in single pancreatic beta-cells. We have been studying mechanisms involved in the regulation of insulin granule movement, which supplies release-ready granules, by direct visualization of granule traffic in living beta-cells and found the movement to be regulated by a mechanism different from that controlling exocytosis. From the obtained findings together with those from electrophysiological approaches, a new understanding of the role of the crucial second messenger Ca2+, and other second messengers, as well as resultant protein phosphorylation has been generated. The aim of this review is to describe a synergistic network for the control of insulin release by second messengers and protein kinases.