The Japanese Journal of Physiology
Print ISSN : 0021-521X
Regular Papers
High Level of Skeletal Muscle Carnosine Contributes to the Latter Half of Exercise Performance during 30-s Maximal Cycle Ergometer Sprinting
Yasuhiro SuzukiOsamu ItoNaoki MukaiHideyuki TakahashiKaoru Takamatsu
Author information

2002 Volume 52 Issue 2 Pages 199-205


The histidine-containing dipeptide carnosine (β-alanyl-L-histidine) has been shown to significantly contribute to the physicochemical buffering in skeletal muscles, which maintains acid-base balance when a large quantity of H+ is produced in association with lactic acid accumulation during high-intensity exercise. The purpose of the present study was to examine the relations among the skeletal muscle carnosine concentration, fiber-type distribution, and high-intensity exercise performance. The subjects were 11 healthy men. Muscle biopsy samples were taken from the vastus lateralis at rest. The carnosine concentration was determined by the use of an amino acid autoanalyzer. The fiber-type distribution was determined by the staining intensity of myosin adenosinetriphosphatase. The high-intensity exercise performance was assessed by the use of 30-s maximal cycle ergometer sprinting. A significant correlation was demonstrated between the carnosine concentration and the type IIX fiber composition (r=0.646, p<0.05). The carnosine concentration was significantly correlated with the mean power per body mass (r=0.785, p<0.01) during the 30-s sprinting. When dividing the sprinting into 6 phases (0-5, 6-10, 11-15, 16-20, 21-25, 26-30 s), significant correlations were observed between the carnosine concentration and the mean power per body mass of the final 2 phases (21-25 s: r=0.694, p<0.05; 26-30 s: r=0.660, p<0.05). These results indicated that the carnosine concentration could be an important factor in determining the high-intensity exercise performance.

Content from these authors
© 2002 by The Physiological Society of Japan
Previous article Next article