The Japanese Journal of Physiology
Print ISSN : 0021-521X
Invited-Editor Section: Reviews
Computational Modeling of Cardiac Ventricular Action Potentials in Rat and Mouse: Review
Semahat S. Demir
Author information
JOURNAL FREE ACCESS

2004 Volume 54 Issue 6 Pages 523-530

Details
Abstract
Little is known about the ionic mechanisms underlying the action potential heterogeneity in ventricle-associated healthy and disease conditions, even though five decades of histological, electrophysiological, pharmacological, and biochemical investigations exist. The computational modeling in murine ventricular myocytes can complement our knowledge of the experimental data and provide us with more quantitative descriptions in understanding different conditions related to normal and disease conditions. This paper initially reviews the theoretical modeling for cardiac ventricular action potentials of various species and the related experimental work. It then presents the progress of the computational modeling of cardiac ventricular cells for normal, diabetic, and spontaneously hypertensive rats. The paper also introduces recent modeling efforts for the action potential heterogeneity in mouse ventricular cells. The computational insights gained into the ionic mechanisms in rodents will continue to enhance our understanding of the heart and provide us with new knowledge for future studies to treat cardiac diseases in children and adults. Because the dissemination of computational models is very important, we continue to disseminate these models by iCell, the interactive cell modeling resource. iCell (http://ssd1.bme.memphis.edu/icell/) has been developed as a simulation-based teaching and learning tool for electrophysiology and contains JAVA applets that present models of various cardiac cells and neurons and simulation data of their bioelectric activities at cellular level.
Content from these authors
© 2004 by The Physiological Society of Japan
Previous article Next article
feedback
Top