Journal of the Japan Society of Powder and Powder Metallurgy
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
Soft Magnetic Materials
Integration of Ni-Cu-Zn and Hexagonal Ferrites into LTCC Modules: Cofiring Strategies and Magnetic Properties
J. TöpferJ. HesseS. BierlichS. BarthB. CapraroT. RabeH. Nagib-ZadehH. Bartsch
Author information
JOURNALS FREE ACCESS

2014 Volume 61 Issue S1 Pages S214-S217

Details
Abstract

We have studied the integration of Ni-Cu-Zn ferrite spinels as well as substituted hexagonal Co2Y-and M-type ferrites into LTCC (Low Temperature Ceramic Co-firing) modules. The cofiring behavior and the magnetic properties of these materials were investigated and evaluated for multilayer applications. Ni-Cu-Zn ferrites exhibit permeabilities of μ=300–500 for operating frequencies in the MHz range. Cu-substituted Y-type ferrites Ba2Co2-x-yZnxCuyFe12O22 in combination with sintering additives display sufficient shrinkage and densification at 900°C. A permeability of μ=10 is observed; however, substituted Co2Y-type ferrites do not exhibit long-term stability at 900°C. Co/Ti-substituted M-type ferrites BaFe12-2yCoyTiyO19 (y=1.2) with planar magneto-crystalline anisotropy exhibit excellent soft magnetic behavior. Using sintering additives, complete densification is reached at 900°C and a permeability of μ=15 and a resonance frequency of larger than 1 GHz are observed. Integration of ferrite multilayer inductor components into LTCC modules using free and constrained cofiring technologies is demonstrated.

Information related to the author
© 2014 by Japan Society of Powder and Powder Metallurgy
Previous article Next article
feedback
Top