Journal of the Japan Society of Powder and Powder Metallurgy
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
Physics & Chemistry
The Verwey Phase of Magnetite: A Long-Running Mystery in Ferrites
J. P. Attfield
Author information
JOURNAL OPEN ACCESS

2014 Volume 61 Issue S1 Pages S43-S48

Details
Abstract
Magnetite (Fe3O4) is the original magnetic material and the parent of ferrite magnets, with modern applications ranging from spintronics to MRI contrast agents. At ambient temperatures magnetite has a cubic spinel-type crystal structure, but it undergoes a complex structural distortion and becomes electrically insulating below the 125 K Verwey transition. The electronic ground state of the Verwey phase has been unclear for over 70 years as the low temperature structure was unknown, but the full low temperature superstructure was recently determined by high energy microcrystal x-ray diffraction. There are 168 frozen phonon modes in the acentric (and hence multiferroic) low temperature magnetite structure. The ground state was found to be Fe2+/Fe3+ charge ordered and Fe2+ orbital ordered to a first approximation, but an unexpected localization of electrons in three-Fe ‘trimeron’ units was discovered. This description is supported by band structure calculations. This brief review will summarise recent progress on understanding the ground state structure of the Verwey phase of magnetite.
Content from these authors
© 2014 by Japan Society of Powder and Powder Metallurgy

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
Previous article Next article
feedback
Top