Journal of the Japan Society of Powder and Powder Metallurgy
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
Review
Theoretical Study of S = 1/2 Frustrate Magnets by Large-scale Simulation of Numerical Diagonalizations
Hiroki NAKANO
Author information
JOURNAL OPEN ACCESS

2020 Volume 67 Issue 2 Pages 72-77

Details
Abstract

We study several cases of the Heisenberg antiferromagnet by large-scale simulation of numerical- diagonalizations based on the Lanczos algorithm. This review paper presents recently obtained results for three cases: the S = 1/2 orthogonal-dimer system, the S = 1/2 kagome-lattice antiferromagnet, and the integer-spin one-dimensional antiferromagnet showing the Haldane gap. Concerning the S = 1/2 orthogonal-dimer system, our numerical-diagonalization results suggest the existence of an unknown boundary that is different from the edge of the exact-dimer phase and the edge of the Néel-ordered phase. The studies for the latter two cases treat extraordinarily large dimensions of the Hamiltonian matrices for the target systems. Calculations for the cases require use of almost all the resources in a modern powerful supercomputer.

Content from these authors
© 2020 by Japan Society of Powder and Powder Metallurgy

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
Previous article Next article
feedback
Top