Journal of the Japan Society of Powder and Powder Metallurgy
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
Paper
Study on Factors Hindering the Single-phase Formation of Divalent-ion-stabilized W-type Ferrites
Shinji NAKAITakeshi WAKIYoshikazu TABATAMasaki KATOHiroto OHTAHiroyuki NAKAMURA
Author information
JOURNAL OPEN ACCESS

2022 Volume 69 Issue 11 Pages 455-460

Details
Abstract

Me-substituted W-type ferrites (AMe2Fe16O27 with A = Sr, Ba, …, and Me = Co, Ni, Zn, Mg, …) can be obtained by standard solid state reaction but always contain secondary phases. Phase stability of SrMe2Fe16O27 with Me = Co, Ni, Zn, and Mg sintered in various oxygen pressures of pO2 = 0.2, 1, 10 and 387 atm were investigated using X-ray diffraction analysis, wavelength-dispersive X-ray (WDX) analysis, and transmission electron microscopy (TEM). WDX analysis revealed that the W-type ferrites are described as SrMe2-δFe16+δO27 because Fe3+ is partially reduced to Fe2+ even when synthesis is initiated from SrMe2Fe16O27. Increasing the oxygen pressure suppresses the reduction of Fe3+ and the formation of the secondary phases. In addition, TEM analysis shows that the SrCo2Fe16O27 single crystal is free of stacking faults. We conclude that the single-phase formation of the Me-substituted W-type ferrites is hampered by the discrepancy between initial and actual chemical composition caused by the appearance of Fe2+.

Content from these authors
© 2022 by Japan Society of Powder and Powder Metallurgy

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
Previous article Next article
feedback
Top