Journal of the Japan Society of Powder and Powder Metallurgy
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799

This article has now been updated. Please use the final version.

Analysis of Compression Deformation at High-Temperatures and FEM Simulation for BaTiO3 Sintered Compacts
Hiroyuki TANAKAHideaki MATSUBARAHideaki YOKOTAToshihiro IGUCHIYuko TakagiHiroshi NOMURASota TERASAKADaisuke IGIMI
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: 23-00087

Details
Abstract

In shis study, yield stress equation, flow rules and physical properties of barium titanate (BaTiO3) are experimentally obtained. These basic equations and coefficient of flow stress are introduced to finite element method and sintering behavior of barium titanate bulk is simulated. From the uni-axis compression test, yield stress equation of BaTiO3 is expressed by Shima’s equation and flow rule is written by plastic equiation. The coefficient of flow stress of BaTiO3 is significantly smaller than literature Alumina and the value is different when the grain size is different. The experimental sintering deformation is quantitatively reproduced by numerical simulation, where basic equation and physical properties are exprerimentally introduced. In addition, the coefficient of flow stress could be determined by simulation sensitivily analysis. Through this study, experimentally obtained yield stress equation, flow rules and coefficient of flow stress are numerically validated.

Content from these authors
© 2024 by Japan Society of Powder and Powder Metallurgy

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
feedback
Top