Abstract
This paper reports an evaluation of the fracture behavior of metal/ceramic composites by small punch test. A specific material combination of a stainless steel and a zirconia was employed. Disk specimens for small punch test of metal/ceramic composite having definite metal/ceramic ratios were prepared by powder metallurgical method. Small punch test was conducted at room temperature. A specific transition behaviors from ductile to brittle fracture have been found to depend on the composition and microstructure. The ductile-brittle transition was observed to take place at a zirconia volume fraction of 0.4-0.6. The microstructural investigation of the fracture behaviors
was also made. It has been found that fracture behaviors are strongly dependent on the continuity of the stainless steel phase; that is, the skeletal to dispersive structural transition determines the fracture behaviors.