Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
On an integral representation of special values of the zeta function at odd integers
Takashi Ito
Author information
JOURNAL FREE ACCESS

2006 Volume 58 Issue 3 Pages 681-691

Details
Abstract
An integral representation of the p-series of odd p is shown;
$¥sum^¥infty_{n=1} ¥frac{1}{n^{2p+1}}$ = (-1)p$¥frac{(2¥pi)^{2p}}{(2p)!} ¥int^1_0$B2p(t) log(sinπt)dt (p=1,2,…),
where B2p(t) is a Bernoulli polynomial of degree 2p. As a consequence of this we have
$¥sum^¥infty_{n=1} ¥frac{1}{n^{2p+1}}$ = (-1)p$¥frac{(2¥pi)^{2p}}{(2p)!} 2 ¥bigg[ ¥sum^p_{k=0} ¥bigg( {2p ¥atop 2k} ¥bigg) B_{2p-2k} ¥bigg( ¥frac12 ¥bigg) b_{2k} ¥bigg],$
where b2k = ∫$¥frac12$0 t2k log(cosπt)dt, k = 0,1,…,p.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2006 The Mathematical Society of Japan
Previous article Next article
feedback
Top