Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Widths of highly excited resonances in multidimensional molecular predissociation
André MartinezVania Sordoni
Author information
JOURNAL FREE ACCESS

2020 Volume 72 Issue 3 Pages 687-730

Details
Abstract

We investigate the simple resonances of a 2 by 2 matrix of 𝑛-dimensional semiclassical Schrödinger operators that interact through a first order differential operator. We assume that one of the two (analytic) potentials admits a well with non empty interior, while the other one is non trapping and creates a barrier between the well and infinity. Under a condition on the resonant state inside the well, we find an optimal lower bound on the width of the resonance. The method of proof relies on Carleman estimates, microlocal propagation of the microsupport, and a refined study of a non involutive double characteristic problem in the framework of Sjöstrand's analytic microlocal theory.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2020 The Mathematical Society of Japan
Previous article Next article
feedback
Top