Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Principal polarizations of supersingular abelian surfaces
Tomoyoshi Ibukiyama
Author information
JOURNAL FREE ACCESS

2020 Volume 72 Issue 4 Pages 1161-1180

Details
Abstract

We consider supersingular abelian surfaces 𝐴 over a field 𝑘 of characteristic 𝑝 which are not superspecial. For any such fixed 𝐴, we give an explicit formula of numbers of principal polarizations 𝜆 of 𝐴 up to isomorphisms over the algebraic closure of 𝑘. We also determine all the automorphism groups of (𝐴, 𝜆) over algebraically closed field explicitly for every prime 𝑝. When 𝑝 ≥ 5, any automorphism group of (𝐴,𝜆) is either ℤ/2ℤ = {± 1} or ℤ/10ℤ. When 𝑝 = 2 or 3, it is a little more complicated but explicitly given. The number of principal polarizations having such automorphism groups is counted exactly. In particular, for any odd prime 𝑝, we prove that the automorphism group of any generic (𝐴, 𝜆) is {± 1}. This is a part of a conjecture by Oort that the automorphism group of any generic principally polarized supersingular abelian variety should be {± 1}. On the other hand, we prove that the conjecture is false for 𝑝 = 2 in case of dimension two by showing that the automorphism group of any (𝐴, 𝜆) (with dim 𝐴 = 2) is never equal to {± 1}.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2020 The Mathematical Society of Japan
Previous article Next article
feedback
Top