Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
A virtual knot whose virtual unknotting number equals one and a sequence of ๐‘›-writhes
Yoshiyuki OhyamaMigiwa Sakurai
Author information
JOURNAL FREE ACCESS

2021 Volume 73 Issue 3 Pages 983-994

Details
Abstract

Satoh and Taniguchi introduced the ๐‘›-writhe ๐ฝ๐‘› for each non-zero integer ๐‘›, which is an integer invariant for virtual knots. The sequence of ๐‘›-writhes {๐ฝ๐‘›}๐‘› โ‰  0 of a virtual knot ๐พ satisfies โˆ‘๐‘› โ‰  0 ๐‘›๐ฝ๐‘›(๐พ) = 0. They showed that for any sequence of integers {๐‘๐‘›}๐‘› โ‰  0 with โˆ‘๐‘› โ‰  0 ๐‘›๐‘๐‘› = 0, there exists a virtual knot ๐พ with ๐ฝ๐‘›(๐พ) = ๐‘๐‘› for any ๐‘› โ‰  0. It is obvious that the virtualization of a real crossing is an unknotting operation for virtual knots. The unknotting number by the virtualization is called the virtual unknotting number and is denoted by ๐‘ข๐‘ฃ. In this paper, we show that if {๐‘๐‘›}๐‘› โ‰  0 is a sequence of integers with โˆ‘๐‘› โ‰  0 ๐‘›๐‘๐‘› = 0, then there exists a virtual knot ๐พ such that ๐‘ข๐‘ฃ(๐พ) = 1 and ๐ฝ๐‘›(๐พ) = ๐‘๐‘› for any ๐‘› โ‰  0.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2021 The Mathematical Society of Japan
Previous article
feedback
Top