Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
On the first eigenvalue of the Laplacian on compact surfaces of genus three
Antonio Ros
Author information
JOURNAL FREE ACCESS

2022 Volume 74 Issue 3 Pages 813-828

Details
Abstract

For any compact Riemannian surface of genus three (ฮฃ,๐‘‘๐‘ 2) Yang and Yau proved that the product of the first eigenvalue of the Laplacian ๐œ†1(๐‘‘๐‘ 2) and the area ๐ด๐‘Ÿ๐‘’๐‘Ž(๐‘‘๐‘ 2) is bounded above by 24๐œ‹. In this paper we improve the result and we show that ๐œ†1(๐‘‘๐‘ 2) ๐ด๐‘Ÿ๐‘’๐‘Ž(๐‘‘๐‘ 2) โ‰ค 16(4 โˆ’ \sqrt{7})๐œ‹ โ‰ˆ 21.668๐œ‹. About the sharpness of the bound, for the hyperbolic Klein quartic surface numerical computations give the value โ‰ˆ 21.414๐œ‹.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 The Mathematical Society of Japan
Previous article Next article
feedback
Top