Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
On the class groups of certain imaginary cyclic fields of 2-power degree
Humio IchimuraHiroki Sumida-Takahashi
Author information
JOURNAL FREE ACCESS

2022 Volume 74 Issue 3 Pages 945-972

Details
Abstract

Let ๐‘ be an odd prime number and let 2๐‘’+1 be the highest power of 2 dividing ๐‘ โˆ’ 1. For 0 โ‰ค ๐‘› โ‰ค ๐‘’, let ๐‘˜๐‘› be the real cyclic field of conductor ๐‘ and degree 2๐‘›. For a certain imaginary quadratic field ๐ฟ0, we put ๐ฟ๐‘› = ๐ฟ0 ๐‘˜๐‘›. For 0 โ‰ค ๐‘› โ‰ค ๐‘’ โˆ’ 1, let โ„ฑ๐‘› be the imaginary quadratic subextension of the imaginary (2, 2)-extension ๐ฟ๐‘›+1/๐‘˜๐‘› with โ„ฑ๐‘› โ‰  ๐ฟ๐‘›. We study the Galois module structure of the 2-part of the ideal class group of the imaginary cyclic field โ„ฑ๐‘›. This generalizes a classical result of Rรฉdei and Reichardt for the case ๐‘› = 0.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 The Mathematical Society of Japan
Previous article Next article
feedback
Top