2022 Volume 74 Issue 3 Pages 945-972
Let ๐ be an odd prime number and let 2๐+1 be the highest power of 2 dividing ๐ โ 1. For 0 โค ๐ โค ๐, let ๐๐ be the real cyclic field of conductor ๐ and degree 2๐. For a certain imaginary quadratic field ๐ฟ0, we put ๐ฟ๐ = ๐ฟ0 ๐๐. For 0 โค ๐ โค ๐ โ 1, let โฑ๐ be the imaginary quadratic subextension of the imaginary (2, 2)-extension ๐ฟ๐+1/๐๐ with โฑ๐ โ ๐ฟ๐. We study the Galois module structure of the 2-part of the ideal class group of the imaginary cyclic field โฑ๐. This generalizes a classical result of Rรฉdei and Reichardt for the case ๐ = 0.
This article cannot obtain the latest cited-by information.