Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Geography of symplectic 4-manifolds admitting Lefschetz fibrations and their indecomposability
Anar AkhmedovNaoyuki Monden
Author information
JOURNAL RESTRICTED ACCESS

2024 Volume 76 Issue 2 Pages 337-391

Details
Abstract

In this paper, we show that for a given finitely presented group ๐บ, there exist integers โ„Ž๐บ โ‰ฅ 0 and ๐‘›๐บ โ‰ฅ 4 such that for all โ„Ž โ‰ฅ โ„Ž๐บ and ๐‘› โ‰ฅ ๐‘›๐บ, and for all 0 โ‰ค ๐‘– โ‰ค 2๐‘› โˆ’ 2, there exists a genus-(2โ„Ž + ๐‘› โˆ’ 1) Lefschetz fibration on a minimal symplectic 4-manifold with (๐œ’, ๐‘12) = (๐‘›, ๐‘–) whose fundamental group is isomorphic to ๐บ. We also prove that such a fibration cannot be decomposed as a fiber sum for 1 โ‰ค ๐‘– โ‰ค 2๐‘› โˆ’ 2 if โ„Ž > (5๐‘› โˆ’ 3)/2. In addition, we give a relation among the genus of the base space of a ruled surface admitting a Lefschetz fibration, the number of blow-ups and the genus of the Lefschetz fibration.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 The Mathematical Society of Japan
Next article
feedback
Top