Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
On braids and links up to link-homotopy
Emmanuel Graff
Author information
JOURNAL RESTRICTED ACCESS

2024 Volume 76 Issue 3 Pages 755-790

Details
Abstract

This paper deals with links and braids up to link-homotopy, studied from the viewpoint of Habiro's clasper calculus. More precisely, we use clasper homotopy calculus in two main directions. First, we define and compute a faithful linear representation of the homotopy braid group, by using claspers as geometric commutators. Second, we give a geometric proof of Levine's classification of 4-component links up to link-homotopy, and go further with the classification of 5-component links in the algebraically split case.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 The Mathematical Society of Japan
Previous article Next article
feedback
Top