2025 Volume 77 Issue 4 Pages 1103-1136
Let ๐ท be a strongly self-absorbing ๐ถ*-algebra. In previous work, we showed that locally trivial bundles with fibers ๐ฆ โ ๐ท over a finite CW-complex ๐ are classified by the first group ๐ธ1๐ท(๐) in a generalized cohomology theory ๐ธ*๐ท(๐). In this paper, we establish a natural isomorphism ๐ธ1_{๐ท โ ๐ชโ}(๐) โ ๐ป1(๐;โค/2) ร_{_๐ก๐ค} ๐ธ1๐ท(๐) for stably-finite ๐ท. In particular, ๐ธ1_{๐ชโ}(๐) โ ๐ป1(๐;โค/2) ร_{_๐ก๐ค} ๐ธ1๐ต(๐), where ๐ต is the JiangโSu algebra. The multiplication operation on the last two factors is twisted in a manner similar to Brauer theory for bundles with fibers consisting of graded compact operators. The proof of the isomorphism described above made it necessary to extend our previous results on generalized DixmierโDouady theory to graded ๐ถ*-algebras. More precisely, for complex Clifford algebras โโ๐, we show that the classifying spaces of the groups of graded automorphisms of โโ๐ โ ๐ฆ โ ๐ท possess compatible infinite loop space structures. These structures give rise to a cohomology theory \hat{๐ธ}*๐ท(๐). We establish isomorphisms \hat{๐ธ}1๐ท(๐) โ ๐ป1(๐;โค/2) ร_{_๐ก๐ค} ๐ธ1๐ท(๐) and \hat{๐ธ}1๐ท(๐) โ ๐ธ1_{๐ท โ ๐ชโ}(๐) for stably finite ๐ท. Together, these isomorphisms represent a crucial step in the integral computation of ๐ธ1_{๐ท โ ๐ชโ}(๐).
This article cannot obtain the latest cited-by information.