Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Existence of solutions for a semilinear parabolic system with singular initial data
Yohei FujishimaKazuhiro IshigeTatsuki Kawakami
Author information
JOURNAL RESTRICTED ACCESS

2026 Volume 78 Issue 1 Pages 63-114

Details
Abstract

Let (๐‘ข, ๐‘ฃ) be a solution to the Cauchy problem for a semilinear parabolic system

(P) \begin{cases} ๐œ•๐‘ก๐‘ข = ๐ท1 ฮ”๐‘ข + ๐‘ฃ๐‘ in โ„๐‘ ร— (0, ๐‘‡), ๐œ•๐‘ก๐‘ฃ = ๐ท2 ฮ”๐‘ฃ + ๐‘ข๐‘ž in โ„๐‘ ร— (0, ๐‘‡), (๐‘ข(โ‹…,0), ๐‘ฃ(โ‹…,0)) = (๐œ‡, ๐œˆ) in โ„๐‘, \end{cases}

where ๐‘ โ‰ฅ 1, ๐‘‡ > 0, ๐ท1 > 0, ๐ท2 > 0, 0 < ๐‘ โ‰ค ๐‘ž with ๐‘๐‘ž > 1, and (๐œ‡, ๐œˆ) is a pair of nonnegative Radon measures or locally integrable nonnegative functions in โ„๐‘. In this paper we establish sharp sufficient conditions on the initial data for the existence of solutions to problem (P) using uniformly local Morrey spaces and uniformly local weak Zygmund type spaces.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2026 The Mathematical Society of Japan
Previous article Next article
feedback
Top