2026 Volume 78 Issue 1 Pages 63-114
Let (๐ข, ๐ฃ) be a solution to the Cauchy problem for a semilinear parabolic system
(P) \begin{cases} ๐๐ก๐ข = ๐ท1 ฮ๐ข + ๐ฃ๐ in โ๐ ร (0, ๐), ๐๐ก๐ฃ = ๐ท2 ฮ๐ฃ + ๐ข๐ in โ๐ ร (0, ๐), (๐ข(โ ,0), ๐ฃ(โ ,0)) = (๐, ๐) in โ๐, \end{cases}
where ๐ โฅ 1, ๐ > 0, ๐ท1 > 0, ๐ท2 > 0, 0 < ๐ โค ๐ with ๐๐ > 1, and (๐, ๐) is a pair of nonnegative Radon measures or locally integrable nonnegative functions in โ๐. In this paper we establish sharp sufficient conditions on the initial data for the existence of solutions to problem (P) using uniformly local Morrey spaces and uniformly local weak Zygmund type spaces.
This article cannot obtain the latest cited-by information.