Published: 1959 Received: July 04, 1959Available on J-STAGE: August 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: August 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) E. Cartan, Les groupes réels simple finis et continus, Ann. Éc. Norm., 31 (1914), 263-355. 2) E. Cartan, Sur certaines formes riemanniennes remarquables des géométries à groupe fondamental simple, Ann. Éc. Norm., 44 (1927), 345-467. 3) E. Cartan, Groupes simples clos et ouverts et géométrie riemannienne, J. Math. pures et appliquées, 8 (1929), 133. 4) C. Chevalley, (a) Theory of Lie groups, I. Princeton, 1946. (b) Théorie des groupes de Lie, t. III, Hermann, Paris, 1955. 5) F. Gantmacher, On the classification of real simple Lie groups, Mat. Sbornik, 5 (1939), 217-250. 6) Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc., 83 (1956), 98-163. 7) G. A. Hunt, A theorem of E. Cartan, Proc. Amer. Math. Soc., 7 (1956), 307-308. 8) N. Iwahori and I. Satake, On Cartan subalgebras of a Lie algebra, Kodai Math. Sem. Rep., 3 (1950), 57-60. 9) B. Kostant, Conjugacy of real Cartan subalgebras, Proc. Nat. Acad. Sci. U.S.A., 41 (1955), 967-970. 10) G. D. Mostow, A new proof of E. Cartan's theorem on the topology of semisimple groups, Bull. Amer. Math. Soc., 55 (1949), 969-980. 11) S. Murakami, Supplements and corrections to my paper: On the automorphisms of a real semisimple Lie algebra, J. Math. Soc. Japan, 5 (1953), 105-112. 12) L. S. Pontrjagin, Continuous groups (in Russian), second edition, Moscow, 1954. 13) H. Weyl, The structure and representations of continuous groups. The Institute for Advanced Study, Princeton, 1935.
Right : [1] E. Cartan, Les groupes réels simple finis et continus, Ann. Éc. Norm., 31 (1914), 263-355. [2] E. Cartan, Sur certaines formes riemanniennes remarquables des géométries à groupe fondamental simple, Ann. Éc. Norm., 44 (1927), 345-467. [3] E. Cartan, Groupes simples clos et ouverts et géométrie riemannienne, J. Math. pures et appliquées, 8 (1929), 133. [4] C. Chevalley, (a) Theory of Lie groups, I. Princeton, 1946. (b) Théorie des groupes de Lie, t. III, Hermann, Paris, 1955. [5] F. Gantmacher, On the classification of real simple Lie groups, Mat. Sbornik, 5 (1939), 217-250. [6] Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc., 83 (1956), 98-163. [7] G. A. Hunt, A theorem of E. Cartan, Proc. Amer. Math. Soc., 7 (1956), 307-308. [8] N. Iwahori and I. Satake, On Cartan subalgebras of a Lie algebra, Kodai Math. Sem. Rep., 3 (1950), 57-60. [9] B. Kostant, Conjugacy of real Cartan subalgebras, Proc. Nat. Acad. Sci. U. S. A., 41 (1955), 967-970. [10] G. D. Mostow, A new proof of E. Cartan's theorem on the topology of semisimple groups, Bull. Amer. Math. Soc., 55 (1949), 969-980. [11] S. Murakami, Supplements and corrections to my paper: On the automorphisms of a real semisimple Lie algebra, J. Math. Soc. Japan, 5 (1953), 105-112. [12] L. S. Pontrjagin, Continuous groups (in Russian), second edition, Moscow, 1954. [13] H. Weyl, The structure and representations of continuous groups. The Institute for Advanced Study, Princeton, 1935.
Date of correction: August 29, 2006Reason for correction: -Correction: PDF FILEDetails: -