Published: 1962 Received: July 24, 1961Available on J-STAGE: September 26, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 26, 2006Reason for correction: -Correction: AUTHORDetails: Wrong : Keio NAGAMI1) Right : Keiô NAGAMI1)
Date of correction: September 26, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) P. Alexandroff, On some results in the theory of topological spaces obtained during the last twenty five years, Uspehi Mat. Nauk USSR, 15 (92) (1960), 25-95. 2) P. Alexandroff-H. Hopf, Topologie I, 1935. 3) C. H. Dowker, Inductive dimension of completely normal spaces, Quart. J. Math. Oxford, 4 (1953), 267-281. 4) W. Hurewicz, Ein Theorem der Dimensionstheorie, Ann. Math., 31(1930), 176-180. 5) M. Katetov, On the dimension of non-separable spaces I, Cechoslovack Math. J., 2 (77) (1952), 333-368. 6) C. Kuratowski, Sur l'application des espaces fonctionnels à la théorie de la dimension, Fund. Math., 18 (1932), 285-292. 7) C. Kuratowski, Topologie II, 1950. 8) O. Lokutsievski, On the dimension of compact spaces, Dokl. Acad. Nauk USSR, 67 (1949), 217-219. 9) A. Lunz, A compact space, the inductive dimension of which is greater than the dimension defined by coverings, Dokl. Acad. Nauk USSR, 66 (1946), 801-803. 10) E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc., 8 (1957), 822-828. 11) H. Miyazaki, The paracompactness of CW-complexes, Tohoku Math. J., 4 (1952), 309-313. 12) K. Morita, Normal families and dimension theory for metric spaces, Math. Ann., 128 (1954), 350-362. 13) K. Morita, On closed mappings and dimension, Proc. Japan Acad., 32 (1956), 161-165. 14) K. Morita, A condition for the metrizability of topological spaces and for n-dimensionality, Sci. Rep. Tokyo Kyoiku Daigaku sec. A, 5 (1955), 33-36. 15) K. Morita, On spaces having the weak topology with respect to closed coverings, Proc. Japan Acad., 29 (1953), 537-543. 16) K. Nagami, Finite-to-one closed mappings and dimension IV, Proc. Japan Acad., 37 (1961), 193-195. 17) K. Nagami, Mappings of finite order and dimension theory, Jap. J. Math., 30 (1960), 25-54. 18) K. Nagami, A note on Hausdorff spaces with the star-finite property I, Proc. Japan Acad., 37 (1961), 131-134. 19) K. Nagami, A note on Hausdorff spaces with the star-finite property II, Proc. Japan Acad., 37 (1961), 189-192. 20) J. Nagata, A generalization of a theorem of W. Hurewicz, J. Inst. Polytech. Osaka City Univ., 9 (1958), 37-38. 21) B. A. Pasynkov, On polyhedral spectra and dimension of compact spaces, especially of compact groups, Dokl. Acad. Nauk USSR, 121 (1958), 45-48. 22) B. A. Pasynkov, On the coincidence of different definitions of the dimension for the locally compact groups, Dokl. Acad. Nauk USSR, 132 (1960), 1035-1037. 23) P. Vopenka, On the dimension of compact spaces, Cechoslovack Math. J., 8 (83) (1958), 319-327. 24) J.H.C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc., 55 (1949), 213-245.
Right : [1] P. Alexandroff, On some results in the theory of topological spaces obtained during the last twenty five years, Uspehi Mat. Nauk USSR, 15 (92) (1960), 25-95. [2] P. Alexandroff-H. Hopf, Topologie I, 1935. [3] C. H. Dowker, Inductive dimension of completely normal spaces, Quart. J. Math. Oxford, 4 (1953), 267-281. [4] W. Hurewicz, Ein Theorem der Dimensionstheorie, Ann. Math., 31 (1930), 176-180. [5] M. Katetov, On the dimension of non-separable spaces I, Cechoslovack Math. J., 2 (77) (1952), 333-368. [6] C. Kuratowski, Sur l'application des espaces fonctionnels à la théorie de la dimension, Fund. Math., 18 (1932), 285-292. [7] C. Kuratowski, Topologie II, 1950. [8] O. Lokutsievski, On the dimension of compact spaces, Dokl. Acad. Nauk USSR, 67 (1949), 217-219. [9] A. Lunz, A compact space, the inductive dimension of which is greater than the dimension defined by coverings, Dokl. Acad. Nauk USSR, 66 (1946), 801-803. [10] E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc., 8 (1957), 822-828. [11] H. Miyazaki, The paracompactness of CW-complexes, Tôhoku Math. J., 4 (1952), 309-313. [12] K. Morita, Normal families and dimension theory for metric spaces, Math. Ann., 128 (1954), 350-362. [13] K. Morita, On closed mappings and dimension, Proc. Japan Acad., 32 (1956), 161-165. [14] K. Morita, A condition for the metrizability of topological spaces and for n-dimensionality, Sci. Rep. Tokyo Kyoiku Daigaku sec. A, 5 (1955), 33-36. [15] K. Morita, On spaces having the weak topology with respect to closed coverings, Proc. Japan Acad., 29 (1953), 537-543. [16] K. Nagami, Finite-to-one closed mappings and dimension IV, Proc. Japan Acad., 37 (1961), 193-195. [17] K. Nagami, Mappings of finite order and dimension theory, Jap. J. Math., 30 (1960), 25-54. [18] K. Nagami, A note on Hausdorff spaces with the star-finite property I, Proc. Japan Acad., 37 (1961), 131-134. [19] K. Nagami, A note on Hausdorff spaces with the star-finite property II, Proc. Japan Acad., 37 (1961), 189-192. [20] J. Nagata, A generalization of a theorem of W. Hurewicz, J. Inst. Polytech. Osaka City Univ., 9 (1958), 37-38. [21] B. A. Pasynkov, On polyhedral spectra and dimension of compact spaces, especially of compact groups, Dokl. Acad. Nauk USSR, 121 (1958), 45-48. [22] B. A. Pasynkov, On the coincidence of different definitions of the dimension for the locally compact groups, Dokl. Acad. Nauk USSR, 132 (1960), 1035-1037. [23] P. Vopenka, On the dimension of compact spaces, Cechoslovack Math. J., 8 (83) (1958), 319-327. [24] J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc., 55 (1949), 213-245.
Date of correction: September 26, 2006Reason for correction: -Correction: PDF FILEDetails: -