Published: 1963 Received: July 23, 1963Available on J-STAGE: September 26, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 26, 2006Reason for correction: -Correction: DTRECEIVEDDetails: Wrong : 19630722 Right : 19630723
Date of correction: September 26, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Y. Akizuki on his 60th birthday
Date of correction: September 26, 2006Reason for correction: -Correction: CITATIONDetails: Right : [1] W. L. Baily, Jr., On the Hilbert-Siegel modular space, Amer. J. Math., 81 (1959), 846-874. [2] W. L. Baily, Jr., On the theory of θ-functions, the moduli of Abelian varieties, and the moduli of curves, Ann. of Math., 75 (1962), 342-381. [3] W. L. Baily, Jr., On the moduli of Abelian varieties with multiplications from an order in a totally real number field, Proc. Int. Cong. of Mathematicians, Stockholm, 1962. [4] W. L. Baily, Jr., On the theory of automorphic functions and the problem of moduli, Bull. Amer. Math. Soc., (to appear). [5] F. Conforto, Abelsche Funktionen und Algebraische Geometrie, Springer, Berlin, 1956. [6] K. Katayama, On the Hilbert-Siegel modular group and Abelian varieties I, J. Fac. Sci. Univ. Tokyo, Sect. 1, 9, Part 3 (1962), 261-291. [7] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures I, Ann. of Math., 67 (1958), 328-401. [8] K. Kodaira and D. C. Spencer, Existence of complex structure on a differentiable family of deformations of compact complex manifolds, Ann. of Math., 70 (1959), 145-166. [9] A. Krazer, Lehrbuch der Thetafunktionen, B. G. Teubner, Leipzig, 1903. [10] A. Krazer, and F. Prym, Neue Grundlagen einer Theorie der Allgemeiner Thetafunktionen, B. G. Teubner, Leipzig, 1892. [11] J. P. Serre, Géométrie Algébrique et Géométrie Analytique, Ann. Inst. Fourier, Grenoble, 6 (1955/56), 1-42. [12] G. Shimura, On the theory of automorphic functions, Ann. of Math., 70 (1959), 101-144. [13] G. Shimura, On analytic families of polarized Abelian varieties and automorphic functions, Ann. of Math., 78 (1963), 149-192. [14] G. Shimura, and Y. Taniyama, Complex Multiplication of Abelian Varieties and its Application to Number Theory, Publ. Math. Soc. Japan, Kenkyusha, Tokyo, 1961. [15] A. Weil, The field of definition of a variety, Amer. J. Math., 78 (1956), 509-524. [16] G. Shimura, Arithmetic of alternating forms and quaternion Hermitian forms, J. Math. Soc. Japan, 15 (1963), 33-65.
Date of correction: September 26, 2006Reason for correction: -Correction: PDF FILEDetails: -