Published: 1964 Received: May 04, 1964Available on J-STAGE: September 26, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 26, 2006Reason for correction: -Correction: TITLEDetails: Wrong : Sufficient conditions for p-valence of regular functions Right : Sufficient conditions for p-valence of regular functions
Date of correction: September 26, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) L. V. Ahlfors, Complex analysis, New York, 1953. 2) S. D. Bernardi, Convex, starlike, and level curves, Duke Math. J., 28 (1961), 57-72. 4) E. Hille, Analytic function theory, I, Boston, 1961/62. 5) W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169-185. 6) S. Ogawa, Some criteria for univalence, J. Nara Gakugei Univ., 10 (1961), 7-12. 7) S. Ogawa, On some criteria for p-valence, J. Math. Soc. Japan, 13(1961), 431-441. 8) S. Ozaki, Some remarks on the univalency and multivalency of functions, Sci. Rep. Tokyo Bunrika Daigaku A, 2 (1934), 42-55. 9) G. Pólya und Szegö, Aufgaben und Lehrsätze aus der Analysis, I, Berlin, 1954. 10) M. O. Reade, On Umezawa's criteria for univalence II, J. Math. Soc. Japan, 10 (1958), 255-259. 11) M. S. Robertson, Analytic functions star-like in one direction, Amer. J. Math., 58 (1936), 465-472. 12) W. C. Royster, Convexity and starlikeness of analytic functions, Duke Math. J., 19 (1952), 447-457. 13) K. Sakaguchi, A note on p-valent functions, J. Math. Soc. Japan, 14 (1962), 312-321. 14) K. Sakaguchi, A representation theorem for a certain class of regular functions, J. Math. Soc. Japan, 15 (1963), 202-209. 15) N. Sone, A generalization of the concept 'convexity or starlikeness', Mem. Fac. Liberal Arts and Education Yamanashi Univ., 1962, 115-119. 16) N. Sone, Univalent functions and non-convex domains, J. Math. Soc. Japan, 15 (1963), 191-201. 17) Lad. Špacek, Contribution à la théorie des fonctions univalentes, Casopis Pest. Mat. Fys., 62 (1936), 12-19. 18) T. Umezawa, On the theory of univalent functions, Tohoku Math. J., 7 (1955), 212-228.
Right : [1] L. V. Ahlfors, Complex analysis, New York, 1953. [2] S. D. Bernardi, Convex, starlike, and level curves, Duke Math. J., 28 (1961), 57-72. [3] R. K. Brown, Univalent solutions of W"+pW=0, Canad. J. Math., 14 (1962), 69-78. [4] E. Hille, Analytic function theory, I, Boston, 1961/62. [5] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169-185. [6] S. Ogawa, Some criteria for univalence, J. Nara Gakugei Univ., 10 (1961), 7-12. [7] S. Ogawa, On some criteria for p-valence, J. Math. Soc. Japan, 13 (1961), 431-441. [8] S. Ozaki, Some remarks on the univalency and multivalency of functions, Sci. Rep. Tokyo Bunrika Daigaku A, 2 (1934), 42-55. [9] G. Pólya und Szegö, Aufgaben und Lehrsätze aus der Analysis, I, Berlin, 1954. [10] M. O. Reade, On Umezawa's criteria for univalence II, J. Math. Soc. Japan, 10 (1958), 255-259. [11] M. S. Robertson, Analytic functions star-like in one direction, Amer. J. Math., 58 (1936), 465-472. [12] W. C. Royster, Convexity and starlikeness of analytic functions, Duke Math. J., 19 (1952), 447-457. [13] K. Sakaguchi, A note on p-valent functions, J. Math. Soc. Japan, 14 (1962), 312-321. [14] K. Sakaguchi, A representation theorem for a certain class of regular functions, J. Math. Soc. Japan, 15 (1963), 202-209. [15] N. Sone, A generalization of the concept ‘convexity or starlikeness’, Mem. Fac. Liberal Arts and Education Yamanashi Univ., 1962, 115-119. [16] N. Sone, Univalent functions and non-convex domains, J. Math. Soc. Japan, 15 (1963), 191-201. [17] Lad. Špacek, Contribution à la théorie des fonctions univalentes, Casopis Pêst. Mat. Fys., 62 (1936), 12-19. [18] T. Umezawa, On the theory of univalent functions, Tôhoku Math. J., 7 (1955), 212-228.
Date of correction: September 26, 2006Reason for correction: -Correction: PDF FILEDetails: -