Published: 1965 Received: January 09, 1965Available on J-STAGE: September 26, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 26, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) L. Pontrjagin, Topological groups, Princeton Univ. Press, 1939 2) T. Tannaka, Ueber den Dualitätsatz der nichtkommutativen topologischen Gruppen, Tohoku Math. J., 45 (1939), 1-12. 3) Harish-Chandra, Lie algebras and the Tannaka duality theorem, Ann. of Math., 51 (1950), 299-330. 4) V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math., 48 (1947), 568-640. 5) L. Pukánszky, On the Kronecker products of irreducible representations of the 2×2 real unimodular group. I, Trans. of Amer. Math. Soc., 100 (1961), 116-152. 6) J. Dixmier, Les algèbres d'operateurs dans l'espace Hilbertien, Gauthier-Villars, 1957. 7) N. Tatsuuma, A duality theorem for the real unimodular group of second order, Proc. Japan Acad., 40 (1964), 638-642.
Right : [1] L. Pontrjagin, Topological groups, Princeton Univ. Press, 1939 [2] T. Tannaka, Ueber den Dualitätsatz der nichtkommutativen topologischen Gruppen, Tôhoku Math. J., 45 (1939), 1-12. [3] Harish-Chandra, Lie algebras and the Tannaka duality theorem, Ann. of Math., 51 (1950), 299-330. [4] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math., 48 (1947), 568-640. [5] L. Pukánszky, On the Kronecker products of irreducible representations of the 2×2 real unimodular group. I, Trans. of Amer. Math. Soc., 100 (1961), 116-152. [6] J. Dixmier, Les algèbres d'operateurs dans l'espace Hilbertien, Gauthier-Villars, 1957. [7] N. Tatsuuma, A duality theorem for the real unimodular group of second order, Proc. Japan Acad., 40 (1964), 638-642.
Date of correction: September 26, 2006Reason for correction: -Correction: PDF FILEDetails: -