Published: 1967 Received: April 15, 1966Available on J-STAGE: September 26, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 26, 2006Reason for correction: -Correction: CITATIONDetails: Right : [1] J. Hajek, On a property of normal distributions of an arbitrary stochastic process, Czechoslovak Math. J., 8 (1958), 610-618, (in Russian). [2] J. Feldman, Equivalence and perpendicularity of Gaussian processes, Pacific J. Math., 8 (1958), 699-708. [3] Yu. Rozanov, On the density of one Gaussian measure with respect to another, Teor. Veroyatnost. i Primenen., 7 (1962), 84-89. [4] T. Hida, Canonical representations of Gaussian processes and their applications, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math., 33 (1960), 109-155. [5] Yu. Prokhorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen., 1 (1956), 289-319. [6] A. Skorokhod, On the differentiability of measures which correspond to stochastic processes, Teor. Veroyatnost. i Primenen., 2 (1957), 417-443. [7] D. Varberg, On Gaussian measures equivalent to Wiener measure, Trans. Amer. Math. Soc., 113 (1964), 262-273. [8] G. Kallianpur and H. Oodaira, The equivalence and singularity of Gaussian measures, Time series analysis, edited by M. Rosenblatt, Wiley, New York, 1963, 279-291. [9] N. Ikeda, T. Hida and H. Yoshizawa, Theory of the flow, Seminar on probability, 12 (1962), (in Japanese.) [10] L. Shepp, Radon-Nikodym derivatives of Gaussian measures, Ann. Math. Statist., 37 (1966), 321-354.
Date of correction: September 26, 2006Reason for correction: -Correction: PDF FILEDetails: -