Published: 1967 Received: April 03, 1967Available on J-STAGE: September 26, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 26, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) F. E. Browder, Nonlinear equations of evolution, Ann. of Math., 80 (1964), 485-523. 2) H. Fujita, On the existence and regularity of the steady-state solutions of the Navier-Stokes equation, J. Fac. Sci. Univ. Tokyo, Sect. I, 9 (1961), 59-102. 3) E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31, 1957. 4) T. Kato, Nonlinear evolution equations in Banach spaces, Proc. Symp. Appl. Math., Vol. XVII, 50-67, Amer. Math. Soc., Providence, R. I., 1965. 5) T. Komura, Semi-groups of operators in locally convex spaces, to appear. 6) J. L. Lions, Équation différentielles opérationelles, Springer, 1961. 7) G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 541-546. 8) J. W. Neuberger, An exponential formula one-parameter semi-groups of nonlinear transformations, J. Math. Soc. Japan, 18 (1966), 154-157. 9) I. E. Segal, Nonlinear semi-groups, Ann. of Math., 78 (1963), 339-364. 10) P. E. Sobolevskii. On the use of fractional powers of self-adjoint operators for the investigation of some nonlinear differential equations in Hilbert space (Russian), Dokl. Akad. Nauk SSSR, 130 (1960), 272-275. 11) H. Tanabe, On the equations of evolution in a Banach space, Osaka Math. J., 12 (1960), 363-376. 12) K. Yosida, Functional analysis, Springer, 1965.
Right : [1] F. E. Browder, Nonlinear equations of evolution, Ann. of Math., 80 (1964), 485-523. [2] H. Fujita, On the existence and regularity of the steady-state solutions of the Navier-Stokes equation, J. Fac. Sci. Univ. Tokyo, Sect. I, 9 (1961), 59-102. [3] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31, 1957. [4] T. Kato, Nonlinear evolution equations in Banach spaces, Proc. Symp. Appl. Math., Vol. XVII, 50-67, Amer. Math. Soc., Providence, R. I., 1965. [5] T. Komura, Semi-groups of operators in locally convex spaces, to appear. [6] J. L. Lions, Équation différentielles opérationelles, Springer, 1961. [7] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 541-546. [8] J. W. Neuberger, An exponential formula one-parameter semi-groups of nonlinear transformations, J. Math. Soc. Japan, 18 (1966), 154-157. [9] I. E. Segal, Nonlinear semi-groups, Ann. of Math., 78 (1963), 339-364. [10] P. E. Sobolevskii. On the use of fractional powers of self-adjoint operators for the investigation of some nonlinear differential equations in Hilbert space (Russian), Dokl. Akad. Nauk SSSR, 130 (1960), 272-275. [11] H. Tanabe, On the equations of evolution in a Banach space, Osaka Math. J., 12 (1960), 363-376. [12] K. Yosida, Functional analysis, Springer, 1965.
Date of correction: September 26, 2006Reason for correction: -Correction: PDF FILEDetails: -