Published: 1968 Received: June 14, 1967Available on J-STAGE: September 26, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 26, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Shokichi Iyanaga
Date of correction: September 26, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) R. Brauer, M. Suzuki and G. E. Wall, A characterization of the one-dimensional unimodular projective groups over finite fields, Illinois J. Math., 2 (1958), 718-745. 2) R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 1757-1759. 3) J. Dieudonné, La géométrie des grouper classiques, Ergebnisse der Math. Bd. 5, Springer, 1963. 4) W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029. 5) K. A. Fowler, Thesis, Univ. of Michigan, 1951. 6) D. Gorenstein and J. H. Walter, On finite groups with dihedral Sylow 2-subgroups, Illinois J. Math., 6 (1962), 553-593. 7) M. Hall, Jr., The theory of groups, Macmillan Co., New York, 1959. 8) D. G. Higman, Focal series in finite groups, Canad. J. Math., 5 (1953), 477-497. 9) M. Suzuki, A characterization of simple groups LF(2, p), J. Fac. Sci. Univ. Tokyo Sect. I, 6 (1951), 259-293. 10) M. Suzuki, On characterizations of linear groups, I, Trans. Amer. Math. Soc., 92 (1959), 191-204. 11) M. Suzuki, Two characteristic properties of (ZT)-groups, Osaka Math. J., 15 (1963), 143-150. 12) M. Suzuki, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math., 82 (1965), 191-212.
Right : [1] R. Brauer, M. Suzuki and G. E. Wall, A characterization of the one-dimensional unimodular projective groups over finite fields, Illinois J. Math., 2 (1958), 718-745. [2] R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U. S. A., 45 (1959), 1757-1759. [3] J. Dieudonné, La géométrie des groupes classiques, Ergebnisse der Math. Bd. 5, Springer, 1963. [4] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029. [5] K. A. Fowler, Thesis, Univ. of Michigan, 1951. [6] D. Gorenstein and J. H. Walter, On finite groups with dihedral Sylow 2-subgroups, Illinois J. Math., 6 (1962), 553-593. [7] M. Hall, Jr., The theory of groups, Macmillan Co., New York, 1959. [8] D. G. Higman, Focal series in finite groups, Canad. J. Math., 5 (1953), 477-497. [9] M. Suzuki, A characterization of simple groups LF(2, p), J. Fac. Sci. Univ. Tokyo Sect. I, 6 (1951), 259-293. [10] M. Suzuki, On characterizations of linear groups, I, Trans. Amer. Math. Soc., 92 (1959), 191-204. [11] M. Suzuki, Two characteristic properties of (ZT)-groups, Osaka Math. J., 15 (1963), 143-150. [12] M. Suzuki, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math., 82 (1965), 191-212.
Date of correction: September 26, 2006Reason for correction: -Correction: PDF FILEDetails: -