Published: 1969 Received: February 15, 1968Available on J-STAGE: September 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) W. Browder, “On the action of Θn(∂π)”, Differentiable and combinatorial topology, A symposium in honor of Marston Morse, Princeton, 1965, 23-36. 2) E. H. Brown and F. P. Peterson, The Kervaire invariant of (8k+2)-manifolds, Bull. Amer. Math. Soc., 71 (1965), 190-193. 3) W. C. Hsiang, J. Levine and R. H. Szczarba, On the normal bundle of a homotopy sphere embedded in euclidean space., Topology, 3 (1965), 173-181. 4) M. A. Kervaire, Le théorèm de Barden-Mazur-Stallings, Comment. Math. Helv., 40 (1965), 31-42. 5) M. Kervaire and J. Milnor, Groups of homotopy spheres; I, Ann. of Math., 77 (1963), 504-537. 6) A. Kosinski, On the inertia groups of π-manifolds, Amer. J. Math., 89 (1967), 227-248. 7) R. Lashof, ed., Problems in differential and algebraic topology, Seattle Conference, 1963, Ann. of Math., 81 (1965), 565-591. 8) J. Levine, A classification of differentiable knots, Ann. of Math., 82 (1965), 15-50. 9) J. Milnor, A procedure for killing the homotopy groups of differentiable manifolds, Symposia in Pure Mathematics, Amer. Math. Soc., III (1961), 39-55. 10) S. P. Novikov, Homotopically equivalent smooth manifolds I, Izv. Akad. Nauk SSSR, Ser. Mat., 28 (1964), 365-474 English transl., Amer. Math. Soc. Transl., (2) 48 (1965), 271-396. 11) S. P. Novikov, Differentiable sphere bundles, Izv. Akad. Nauk SSSR, Ser. Mat., 29 (1965), 71-96; English transl., Amer. Math. Soc. Transl., (2) 63 (1967), 217-244. 12) S. Smale, On the structure of manifolds, Amer. J. Math., 84 (1962), 387-399. 13) I. Tamura, Classification des variétés différentiables, (n-1)-connexes, sans torsion, de dimension 2n+1, Séminaire Cartan, 1962/63. 14) I. Tamura, Sur les sommes connexes de certaines variétés différentiables, C. R. Acad. Sci. Paris, 255 (1962), 3104-3106. 15) I. Tamura, On the classification of sufficiently connected manifolds, J. Math. Soc. Japan, 20 (1968), 371-389. 16) H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, No. 49, 1962. 17) C. T. C. Wall, Killing the middle homotopy groups of odd dimensional manifolds, Trans. Amer. Math. Soc., 103 (1962), 421-433. 18) C. T. C. Wall, The action of Γ2n on (n-1)-connected 2n-manifolds, Proc. Amer. Math. Soc., 13 (1962), 943-944. 19) J. H. C. Whitehead, Combinatorial homotopy; I, Bull. Amer. Math. Soc., 55 (1949), 213-245. 20) H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, Ann. of Math., 45 (1944), 220-246.
Right : [1] W. Browder, “On the action of Θn(∂π)”, Differentiable and combinatorial topology, A symposium in honor of Marston Morse, Princeton, 1965, 23-36. [2] E. H. Brown and F. P. Peterson, The Kervaire invariant of (8k+2)-manifolds, Bull. Amer. Math. Soc., 71 (1965), 190-193. [3] W. C. Hsiang, J. Levine and R. H. Szczarba, On the normal bundle of a homotopy sphere embedded in euclidean space., Topology, 3 (1965), 173-181. [4] M. A. Kervaire, Le théorèm de Barden-Mazur-Stallings, Comment. Math. Helv., 40 (1965), 31-42. [5] M. Kervaire and J. Milnor, Groups of homotopy spheres; I, Ann. of Math., 77 (1963), 504-537. [6] A. Kosinski, On the inertia groups of π-manifolds, Amer. J. Math., 89 (1967), 227-248. [7] R. Lashof, ed., Problems in differential and algebraic topology, Seattle Conference, 1963, Ann. of Math., 81 (1965), 565-591. [8] J. Levine, A classification of differentiable knots, Ann. of Math., 82 (1965), 15-50. [9] J. Milnor, A procedure for killing the homotopy groups of differentiable manifolds, Symposia in Pure Mathematics, Amer. Math. Soc., III (1961), 39-55. [10] S. P. Novikov, Homotopically equivalent smooth manifolds I, Izv. Akad. Nauk SSSR, Ser. Mat., 28 (1964), 365-474; English transl., Amer. Math. Soc. Transl., (2) 48 (1965), 271-396. [11] S. P. Novikov, Differentiable sphere bundles, Izv. Akad. Nauk SSSR, Ser. Mat., 29 (1965), 71-96; English transl., Amer. Math. Soc. Transl., (2) 63 (1967), 217-244. [12] S. Smale, On the structure of manifolds, Amer. J. Math., 84 (1962), 387-399. [13] I. Tamura, Classification des variétés différentiables, (n-1)-connexes, sans torsion, de dimension 2n+1, Séminaire Cartan, 1962/63. [14] I. Tamura, Sur les sommes connexes de certaines variétés différentiables, C. R. Acad. Sci. Paris, 255 (1962), 3104-3106. [15] I. Tamura, On the classification of sufficiently connected manifolds, J. Math. Soc. Japan, 20 (1968), 371-389. [16] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, No. 49, 1962. [17] C. T. C. Wall, Killing the middle homotopy groups of odd dimensional manifolds, Trans. Amer. Math. Soc., 103 (1962), 421-433. [18] C. T. C. Wall, The action of Γ2n on (n-1)-connected 2n-manifolds, Proc. Amer. Math. Soc., 13 (1962), 943-944. [19] J. H. C. Whitehead, Combinatorial homotopy; I, Bull. Amer. Math. Soc., 55 (1949), 213-245. [20] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, Ann. of Math., 45 (1944), 220-246.
Date of correction: September 29, 2006Reason for correction: -Correction: PDF FILEDetails: -