Published: 1970 Received: December 15, 1969Available on J-STAGE: September 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) Yu. A. Davydov, I. A. Ibragimov, M. I. Gordin and V. N. Solev, Stationary processes. Limit theorems. Regularity conditions, Proceedings of USSR-Japan Symposium on Probability, Khabarovsk, August (1969), 72-99. 2) E. B. Dynkin, Markov processes, Vol. I, Springer-Verlag, 1965. 3) M. Fukushima and M. Hitsuda, On a class of Markov processes taking values on lines and the central limit theorem, Nagoya Math. J., 30 (1967), 47-56. 4) E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Collq. Publ., 31, 1957. 5) J. Keilson and D. M. G. Wishart, A central limit theorem for processes defined on a finite Markov chain, Proc. Cambridge Philos. Soc., 60 (1964), 547-567. 6) L. D. Meshalkin, Limit theorem for Markov chain with a finite state, Theor. Probability Appl., 6 (1961), 257-275. 7) S. V. Nagaev, Some limit theorems for stationary Markov chains, Theor. Probability Appl., 2 (1957), 379-406. 8) Yu. V. Prokhorov, Convergence of stochastic processes and limit theorem of the probability, Theor. Probability Appl., 1 (1956), 177-238. 9) F. Riesz and B. Sz-Nagy, Functional analysis, Frederick Unger Publ. Co., 1965. 10) V. N. Tutubalin, On limit theorems for the product of random matrices, Theor. Probability Appl., 10 (1965), 15-27. 11) I. S. Volkov, On the distribution of sums of random variables defined on a homogeneous Markov chain with finite number of states, Theor. Probability Appl., 3 (1958), 413-429.
Right : [1] Yu. A. Davydov, I. A. Ibragimov, M. I. Gordin and V. N. Solev, Stationary processes. Limit theorems. Regularity conditions, Proceedings of USSR-Japan Symposium on Probability, Khabarovsk, August (1969), 72-99. [2] E. B. Dynkin, Markov processes, Vol. I, Springer-Verlag, 1965. [3] M. Fukushima and M. Hitsuda, On a class of Markov processes taking values on lines and the central limit theorem, Nagoya Math. J., 30 (1967), 47-56. [4] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Collq. Publ., 31, 1957. [5] J. Keilson and D. M. G. Wishart, A central limit theorem for processes defined on a finite Markov chain, Proc. Cambridge Philos. Soc., 60 (1964), 547-567. [6] L. D. Meshalkin, Limit theorem for Markov chain with a finite state, Theor. Probability Appl., 6 (1961), 257-275. [7] S. V. Nagaev, Some limit theorems for stationary Markov chains, Theor. Probability Appl., 2 (1957), 379-406. [8] Yu. V. Prokhorov, Convergence of stochastic processes and limit theorem of the probability, Theor. Probability Appl., 1 (1956), 177-238. [9]F. Riesz and B. Sz-Nagy, Functional analysis, Frederick Unger Publ. Co., 1965. [10] V. N. Tutubalin, On limit theorems for the product of random matrices, Theor. Probability Appl., 10 (1965), 15-27. [11] I. S. Volkov, On the distribution of sums of random variables defined on a homogeneous Markov chain with finite number of states, Theor. Probability Appl., 3 (1958), 413-429.
Date of correction: September 29, 2006Reason for correction: -Correction: PDF FILEDetails: -